COSMIC Measurements Dispersion

J.J. Cuadrado-Gallego
Pablo Rodríguez-Soria
CuBIT
Software Measurement Lab,
Dep. of Computer Science,
University of Alcalá
Madrid, Spain

Robert Neumann
Reiner Dumke
Dep. of Distributed Systems
Otto-von-Guericke
University
Magdeburg, Germany

Andreas Schmietendorf
Dep. of Cooperative Studies
Berlin School of Economics
and Law
Berlin, Germany

IWSM/MENSURA 2012
Topics

1. Motivation
2. Software Functional Size Measurement
3. COSMIC FFP
4. Data Gathering
5. Data Analysis
6. Concluding Remarks
Topics

1. **Motivation**
2. Software Functional Size Measurement
3. **COSMIC FFP**
4. Data Gathering
5. Data Analysis
6. Concluding Remarks
1. Motivation

- Study of the error that is introduced together with the interpretation of the COSMIC unit application rules.

- Due to subjectivity and degrees of freedom, this error can lead to great measurement dispersions.

- Data analysis is obtained based upon a study performed at a University, together with a group of Master students.
Topics

1. Motivation

2. Software Functional Size Measurement

3. COSMIC FFP

4. Data Gathering

5. Data Analysis

6. Concluding Remarks
2. Software Functional Size Measurement

- Earliest SFSM methods → Source Lines of Code - SLOC

- Newest SFSM methods → Function Points – FP
 - NESMA v.2.1, Standard ISO/IEC 24570
 - MK II v.1.3.1, Standard ISO/IEC 20968
 - COSMIC v3.0. Standard ISO/IEC 19761
 - FISMA FPA v1.1 Standard ISO/IEC 29881
2. Software Functional Size Measurement

- SFSF Methods Timeline -
Topics

1. Motivation
2. Software Functional Size Measurement
3. **COSMIC FFP**
4. Data Gathering
5. Data Analysis
6. Concluding Remarks
3. COSMIC FFP

- Common Software Measurement International Consortium (COSMIC) was founded in 1998
 - Definition of the CFP unit in 1999.
 - Increase of the projects measured using COSMIC.

- COSMIC Features:
 - Wide scope of applicability; it can be used to measure very different kinds of software; real-time software.
 - Clearness of its concepts; it is easy to use and to learn.
 - Low cost of application.
Topics

1. Motivation

2. Software Functional Size Measurement

3. COSMIC FFP

4. Data Gathering

5. Data Analysis

6. Concluding Remarks
4. Data Gathering

- Data Gathering Problems:
 - Obtaining industry data on the dispersion of COSMIC unit is practically impossible.
 - Solution ➔ Create a laboratory environment for collecting measurement data of same software projects by different users.

- Data Gathering Procedure:
 1. Training COSMIC unit-based measurement
 - Students receive 10 hours of theoretical lectures
4. Data Gathering

- **Data Gathering Procedure:**

 2. **Student selection**
 - Attend at least 90% of the classes
 - Have a grade better than 7/10 in the written exam

 3. **Real-world application measurement**

- **Sample Generation:**

 - One academic year
 - Following previous steps → 61 students were selected to participate in the COSMIC measurement dispersion study.
Topics

1. Motivation
2. Software Functional Size Measurement
3. COSMIC FFP
4. Data Gathering
5. Data Analysis
6. Concluding Remarks
5. Data Analysis

- Definition of the COSMIC variables:
 - Entry (E)
 - Exit (X)
 - Read (R)
 - Write (W)

- Statistical Analysis of the Variables:
 - Variable W showed the highest difference with AV.
 - TFP features values more spread than other variable values.
 - Majority of measurements for TFP was close to its AV value of 38.
5. Data Analysis

Distribution of the sample for TFP

<table>
<thead>
<tr>
<th>N</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z de Kolmogorov-Smirnov</td>
<td>0.69392633</td>
</tr>
<tr>
<td>Sig. asintot. (bilateral)</td>
<td>0.72132108</td>
</tr>
</tbody>
</table>

Kolmogorov-Smirnov Test
Topics

1. Motivation
2. Software Functional Size Measurement
3. COSMIC FFP
4. Data Gathering
5. Data Analysis
6. Concluding Remarks
6. Concluding Remarks

- Dispersion of the COSMIC unit conforms to a normal distribution.
 - 95% of measurements values are located in an Interval of 60% around the AV.
 - Interval of 50% around the AV 90% of the measurements are located.
 - Large margin of error due to measurers with low experience.

- Variable W identified as the main source of error of dispersion.

- Problem of data collection; need to rely upon a repeatable and adaptable process for measuring the case study.
6. Concluding Remarks

- Future lines of Research:
 - Expansion the analysis to new sets of data with the objective of verifying the results that were obtained in this study.
 - Implementation of a new analysis on a sample obtained from expert measurers;
 - Analyze the dispersion produced for the sample to show that it is lower than the dispersion produced for the sample of this paper (low experience).
Thank you!

Questions?

Contact:
J.J. Cuadrado-Gallego
jjcg@uah.es