
 1

COSMIC Method Update Bulletin #11

Proposal to improve the COSMIC Method v3.0.1 definition
of a Functional Process and related topics

1. The problems that lead to the proposed changes

The origin of this Method Update Bulletin (‘MUB’) was the discovery that when using the ‘MkII
FPA’ method (another functional size measurement method) a weakness in its definition of a
‘logical transaction’ (the MkII method’s equivalent of a functional process) had resulted in some
measurement errors. It was realized that the same weakness existed in the COSMIC method’s
definition of a functional process.

Further, some providers of training and consulting services have reported occasional difficulties in
understanding the definition of a ‘functional process’, resulting in mis-interpretation. The
consequence was that the COSMIC Measurement Practices Committee started a very thorough
review of the definition of a functional process and several closely-related related concepts and
measurement rules. The review showed that in addition to the need to improve the definition and
rules for a functional process, several other areas of improvement are needed:

 making clearer what we mean by ‘Functional User Requirements’

 explaining the possible degrees of the relationships (i.e. ‘cardinalities’) between events,
functional users, triggering Entries and functional processes and improving the definitions
of these concepts

 an explanation of how to measure functional processes that share some functionality in
common or that are very similar

 an explanation of the need to distinguish between the triggering event that starts a
software system, and the triggering events that start the functional processes that the
software system must execute.

The functional process is one of the most basic concepts of the COSMIC method, so its definition
should be changed only if there is a real risk of mis-interpretation. It is unilkely that the proposed
changes will have any effect on existing measurements unless the current definition has already
been mis-interpreted. But we acknowledge that possibility and apologize for any problems this
may cause to our method users.

The purpose of this MUB is to describe the changes needed and also why they are needed. Until
this review, the MPC believed that the current definition of the method in version 3.0.1 was 100%
logically consistent, even if it might not be perfectly clearly explained. The review has shown,
however, that there are logical inconsistencies between certain existing definitions which we must
correct. In the review we have found nothing wrong with the intent of the principles, rules and
definitions that were originally published in the year 2000. Our challenge in this review has been
to eliminate the inconsistencies and to improve the explanations and examples so that the
method is easier to understand and less likely to be mis-interpreted.

(To help understand the impact of the proposed changes, we investigated the effect of the
proposed definition changes on the current COSMIC Foundation-level certification exam. Very
few of the 214 questions available for use in the exam, concerned with the wording of the
definitions, actually need to be changed to align with the revised definitions.)

We assume the reader of this Method Update Bulletin has a full understanding of the COSMIC
method.

 2

2. The current definition of a ‘Functional Process’

The current definition of a Functional Process in section 3.2.1 of the Measurement Manual
(written out here as bullet points for ease of reference) is as follows:

“A functional process:

a) is an elementary component of a set of Functional User Requirements,
b) comprising a unique, cohesive and independently executable set of data movements.
c) It is triggered by a data movement (an Entry) from a functional user that informs the piece

of software that the functional user has identified a triggering event.
d) It is complete when it has executed all that is required to be done in response to the

triggering event.

NOTE: In addition to informing the piece of software that the event has occurred, the
‘triggering Entry’ may include data about the object of interest associated with the event.”

3. Clarification of ‘Functional User Requirements’

Understanding clause a) of the definition of a functional process depends on understanding the
meaning of ‘Functional User Requirements’ (or ‘FUR’). However, it has become evident that we
have used the term ‘FUR’ in the Measurement Manual in two subtly different ways.

In the Measurement Manual, version 3.0.1, section 1.2, we discuss how to derive the FUR from
the available software artifacts. It is the FUR that must be measured and all the definitions,
principles and rules for the method assume a set of FUR that is perfectly structured for COSMIC
measurement. In practice, however, very often the artifacts from which FUR are derived are
incomplete or unclear in some way. Additionally, there may not be a clear one-to-one mapping
from individually stated requirements or physical artifacts to functional processes. The Measurer
must therefore usually make some assumptions to produce the FUR that will actually be
measured.

Elsewhere in the COSMIC documentation, there are many places where we give examples
starting with e.g. ‘Suppose the FUR’, or ‘It is possible that FUR exist’, or ‘If the FUR state
explicitly....’. This usage may give the impression that ‘FUR’ means ‘the functional sub-set of the
actual statement of requirements’. As noted above, this sub-set almost invariably has some
omissions, ambiguities, etc.

To remove any uncertainty, we propose to add the following after the definition of ‘FUR’:

“In this Measurement Manual, we will restrict the term FUR to mean the functional user
requirements that:

 are derived from the available software artifacts (requirements, designs, physical
artifacts, etc),

 are adjusted, if necessary, by assumptions to overcome uncertainties in the available
artifacts,

 contain all the information needed for a COSMIC FSM.”

For the phrases quoted above that are used to introduce examples, we will use ‘actual
requirements’ or ‘physical artifacts’, etc as appropriate to the example.

 3

4. Reasons for proposed changes to the current definition of a ‘Functional Process’

The following are reasons to propose improvements to the current definition and related rules and
text.

 A functional process is not, strictly speaking, a ‘component’ of the FUR, but is a
representation of a part of the FUR of the software to be measured.

 In clause a), ‘component’ should be avoided because component tends to be used in
relation to software; FUR are requirements for software.

 In clause a) it should be made explicit that the FUR in this definition are only those for the
software being measured, which has already been defined by its scope, etc.

 In clause b), ‘cohesive’ should be deleted because it does not add any usable meaning to
the definition.

 In clause b), the meaning of ‘independently executable’ is unclear. Two functional
processes that have some common functionality may, when implemented and executing,
use some common code. Also, it may be a system requirement that one functional
process (-type) cannot be executed unless preceded by another functional process (-
type). These two examples suggest there are circumstances where functional processes
are not actually ‘independently executable’. In fact, the definition should convey that each
functional process can be defined independently of any other functional process in the
software being measured.

 Clause c) depends on a functional user identifying (or ‘sensing’) a triggering event. But a
functional user may also be the source of a triggering event. (For example, a human
functional user is the source of the triggering event when the user decides to make an
enquiry. And when a clock sends a signal to start a real-time functional process, the clock
is both the source of the event and the functional user that initiates the triggering Entry.).
Actually, what matters for the definition is not how a functional user relates to the
triggering event but that an event causes a functional user to initiate a triggering Entry.

 In Clause d), the phrase ‘all that is required to be done in response to the triggering
event’ is too open-ended. It could be mis-interpreted to cover all the functional processes
in different software systems that may arise from a single event. The definition should
refer to all that is required to be done in response to the ‘triggering Entry’, not to the
‘triggering event’. (This problem was the original main reason for our deciding to re-
examine the functional process definition.) The term ‘triggering Entry’ should be defined
in the Glossary.

 The COSMIC method has not been clear on whether a single functional process may be
partly processed on-line and partly processed in batch mode. (It may not.)

5. Proposed changes to section 3.2.1 of the Measurement Manual, version 3.0.1

Change 5.1: The proposed revised definition of a functional process is as follows.

a) A functional process is a set of data movements representing an elementary part of the
Functional User Requirements (FUR) for the software being measured, that is unique
within that FUR and that can be defined independently of any other functional process in
that FUR.

b) Each functional process starts processing on receipt of a data group moved by the
triggering Entry data movement of the functional process.

c) The set of all data movements of a functional process is the set that is needed to meet its
FUR for all the possible responses to its triggering Entry.

NOTE 1: When implemented, it is an occurrence of a functional process that starts executing on
receipt of an occurrence of a data group moved by an occurrence of a triggering Entry.

 4

NOTE 2: The FUR for a functional process may require one or more other Entries in addition to
the triggering Entry.

Change 5.2: The existing Figure 3.2.1 below shows that an event is ‘sensed by’ a functional user
which then triggers a functional process.

:
Two changes are needed for this Figure 3.2.1. First, as noted above, it is more generally useful to
replace ‘is sensed by’ with ‘causes’. Second, the diagram could be misleading if it is interpreted
as meaning that a functional user generates the triggering Entry that triggers a functional process.
This interpretation would be incorrect; any Entry is part of a functional process so cannot be
‘generated’ by a functional user. To avoid this potential mis-interpretation, Figure 3.2.1 and the
related text will be modified as follows.

“The relationship between a triggering event, the functional user and the Entry data movement
that triggers a functional process being measured is depicted in Figure 3.2.1 below. The
interpretation of this diagram is: a triggering event causes a functional user to generate a data
group that is moved by the triggering Entry of a functional process to start the functional process.

Note: for ease of reading, we often omit the reference to the data group and state that a
functional user initiates a triggering Entry that starts a functional process or even more simply that
a functional user initiates a functional process.

Figure 3.2.1 – Relation between triggering event, functional user and functional process

As a result of an in-depth study by the Measurement Practices Committee of the possible
relationships that may occur along this chain, the following text will also be added.

“All the relationships between the concepts in Fig. 3.2.1 (the triggering event / functional user /
triggering Entry / functional process) may be one-to-many, many-to one, or many-to-many, with
one exception. (The exception is that the data group moved by any one triggering Entry may
initiate only one functional process – see Rule b) for a functional process in section 6 of this
Method Update Bulletin). Some examples of possible cardinalities:

Triggering

event
Is sensed

by

Triggering

Entry

Boundary

Functional

user

Functional

process

Triggering

Event
causes

that is moved

into a FP by
the FP’s

Triggering

Entry

Boundary

Functional

Process

Functional
User

to generate a

data group

 5

 A triggering event may be sensed by many functional users, e.g. an earthquake is
detected by many sensors

 Some types of functional user can detect many types of events, e.g. human operators of
a business application who initiate a triggering Entry for each event

 A hardware functional user may initiate more than one triggering Entry on sensing one
triggering event in certain types of safety-critical software

 Some functional processes may be initiated by different functional users, e.g. a software
component that can be called by many of its software functional users

In practice, the cardinalities along all the chains for the software being measured (i.e. that
describe the specific events that cause specific functional users to initiate specific functional
processes) will be constrained by the software FUR. For a fuller discussion of the cardinalities
along the chain of Fig. 3.2.1 and for more examples, see the Appendix to this MUB.” (The
Appendix to this MUB will become an Appendix to the Measurement Manual.)

Change 5.3: The existing definition of a triggering event needs to be modified in light of
reconsidering the possible cardinalities along the chain of Fig. 3.2.1. Also this definition includes
the definition of an ‘event’ embedded in its text. It is preferable to separate these two definitions,
as follows.

Event

Something that happens.

Triggering Event

An event, recognised in the Functional User Requirements of the software being measured, that
causes one or more functional users of the software to generate one or more data groups, each of

which will subsequently be moved by a triggering Entry. A triggering event cannot be sub-divided
and has either happened or not happened.

Change 5.4: The changes to the definition of a functional process and to the important Figure
3.2.1 mean we should now add a definition for a ‘triggering Entry’.

The text following the existing Figure 3.2.1 in the Measurement Manual v3.0.1 states:
“The triggering Entry is normally a positive, unambiguous message that informs the software that the
functional user has identified a triggering event. The triggering Entry often also includes data about an
object of interest associated with the event.”

This statement is unsatisfactory in two ways:

 Re the first sentence of this text: we now realise that there are cases (see the examples
below) where the software is not required to be informed that the functional user has
‘identified an event’. The FUR may require that the functional user provides the software
with other data associated with the event, but not the event per se.

 Re the second sentence of this text: an event can be regarded as an object of interest.
Therefore, the second sentence cannot be true, since a triggering Entry can move only
one data group describing one object of interest.

We therefore now define a triggering Entry as follows:

“The Entry data movement of a functional process that moves a data group, generated by a
functional user, that the functional process needs to start processing.

NOTE The FUR for a functional process may require one or more other Entries in addition to the
triggering Entry.”

 6

To illustrate this definition, we will add the following:

“The data group(s) that a functional user will generate as a result of a triggering event depend on
the FUR of the functional process that will process the data, as illustrated by the following
examples:

a) A functional process of a real-time software system may be started by its triggering Entry
informing the functional process that a clock (functional user) has ticked. The data group
moved conveys data (the tick, perhaps via a single bit) that informs only that an event has
occurred.

b) A functional process of an industrial real-time fire detection software system may be
started by a triggering Entry initiated by a specific smoke detector (functional user). The
data group generated by the detector conveys the information ‘smoke detected’ (an event
has occurred) and includes the detector ID (i.e. data about where the event occurred)’

c) A functional process of a personnel software system may be started by a triggering Entry
that moves a data group describing a new employee. The data group is generated by a
human functional user of the personnel software who enters the data. The object of
interest of this data group is ‘employee’. Normally, the event of a new employee starting
work is not of interest per se. The entered data informs about the employee; it is not
about the event of starting work. (However, the date of starting work will almost certainly
be recorded as an attribute in the employee data group.)

d) A bar code reader (a functional user) at a supermarket checkout starts a scan when a bar
code appears in its window (the triggering event). The reader generates a data group,
comprising an image of the bar code. This data group is moved by a triggering Entry into
its functional process that adds the product cost to the customer’s bill if the code is valid.
The object of interest of this group is the product whose bar code is scanned.”

Change 5.5
A final consequence of the above is that Principle e) of the Generic Software Model must be
changed. This Principle, currently states:

“Each functional process is triggered by an Entry data movement from a functional user which
informs the functional process that the functional user has identified an event.

This statement has the same problem as already noted in 5.2 above (a triggering Entry cannot
come ‘from’ a functional user; it is part of a functional process). The revised wording of this
Principle will be based on the revised interpretation of Fig. 3.2.1:

“Each functional process is started by its triggering Entry data movement. The data group
moved by the triggering Entry is generated by a functional user in response to a triggering
event.”

6. Proposed changes to section 3.2.2 of the Measurement Manual, version 3.0.1

Change 6.1: Improvements to the Rules for a functional process are proposed. The Rules have
also been re-sequenced into a more logical order.

 The existing Rules a) and b) will be removed since they say nothing in addition to what
the definition of a functional process states.

 The existing Rule c) is correct but does not cover all the possible relationships between a
triggering event, the functional user, a triggering Entry and a functional process as shown
in Figure 3.2.1 of the Measurement Manual. This topic will now be dealt with in section
3.2.1 (see Change 5.2 above). The new Rule b) now defines only the important
relationship between a triggering Entry and a functional process: it replaces the existing
Rule c)

 7

 We add to the existing Rule d), now c), that there is no upper limit to the size of a
functional process

 The existing Rule e) is moved to become Rule a), unchanged

 The existing Rule f), now d), is now considered misleading since there are circumstances
where a functional process, when executing, can enter a wait state during its execution.
(The existing rule d) refers to entering a wait-state after execution.) The rule has therefore
been re-phrased; also it applies equally to business application as well as real-time
software

 The existing Rule g) has a mistake, as also does a related Example 3 in section 3.2.5.
This Rule must apply only to different values of data attributes in different occurrences of
the Entries that comprise the input; the Rule should not apply to different numbers of data
attributes in an Entry. Furthermore, the content of this Rule now follows directly from the
revised clause c) of the definition of a functional process (see Change 5.3 above). This
Rule is therefore redundant and has been deleted. The topic has been moved to section
3.2.5 (see Change 8.1 below)

 The existing Rule h) is now better considered as describing examples and will therefore
be removed from the Rules.

Note that in all these Rules, all mentions of triggering event, functional user, functional
process, etc are to ‘types’ of these unless otherwise stated. All changed text is shown in
bold, dark blue text, or with a strikethrough.

RULES – Functional process

a) A functional process shall belong entirely to the measurement scope of one piece of
software in one, and only one, layer.

b) Any one triggering Entry to a piece of software being measured may initiate
only one functional process in that software.

c) A functional process shall comprise at least two data movements, an Entry plus
either an Exit or a Write. There is no upper limit to the number of data
movements in a functional process

d) In the context of real-time software, An executing functional process shall be

considered terminated when it has satisfied its FUR for the response to its
triggering Entry. A pause during the processing for technical reasons shall

not be considered as termination of the functional process.

Change 6.2: The text of section 3.2.2 will be enhanced to emphasize the process of identifying
functional processes in light of the improvements to rule a) above. The process, after the
functional users have been identified and given the FUR for the software being measured, should
be:

 Identify the separate events in the world of the functional users that the software being
measured must respond to – the ‘triggering events’

 Identify which functional user(s) of the software may respond to each triggering event

 Identify the triggering Entry (or Entries) that each functional user may initiate in response
to the event

 Identify the functional process started by each triggering Entry

Change 6.3 As noted above, the previous rule h) will now be presented as two examples:

BUSINESS EXAMPLES: Separate triggering event (-types) and therefore separate functional
process (-types) should be distinguished in the following cases:

 8

 When a human functional user makes decisions outside the software on ‘what to do next’
that are independent in time and that require separate responses from the software, each
separate decision is a separate triggering event for which the software must provide a
separate functional process. Example: a supplier functional user enters a customer order
for an item of complex industrial equipment and later confirms acceptance of the order to
the customer. Between entering the order and accepting it, the user may make enquiries
about whether the new order can be delivered by the requested delivery date, and about
the customer’s credit-worthiness, etc. Although acceptance of an order must follow entry
of an order, in this case the user must make a separate decision to accept the order. This
indicates separate functional processes for order entry and for order acceptance.

 When the responsibilities for activities are separated (e.g. in a personnel system where
the responsibility for maintaining basic personal data is separated from the responsibility
for maintaining payroll data). Separate functional users each with their own separate
responsibilities indicates separate functional processes.

7. Proposed changes to section 3.2.3 c) of the Measurement Manual

Change 7.1: Section 3.2.3 (‘Triggering events and functional processes in the business applications

domain’), paragraph c), must be corrected in light of the above. Paragraph c) is reproduced below
showing the proposed new text in bold blue and the deletions as strikethroughs.

“There is no difference in principle to the analysis of a functional process whether it is required to
be processed on-line or in batch mode. By definition, all data that has been entered as input
for batch processing must be temporarily stored somewhere before the process can start.
(N.B. we distinguish input data – all the Entries = from other persistent data that might also
need to be read or written by the batch process.) When measuring a batch-processed
application, any temporarily-stored input data should be analysed in the same way as if it
were being entered directly to the application. This input data should not be regarded as
‘persistent data’.

NOTE. A requirement that some input data be batch-processed is a non-functional
requirement (NFR). The effect of this NFR is that the input data must be available (as a
‘batch’) for input to the batch process. How that happens in practice does not concern the
analysis of the FUR of the batch process The NFR does not affect the FUR for the batch
process.

 The overnight processing is a technical implementation decision, and ‘all that is required to be
done’ hasn’t happened until the overnight process is completed. Given a requirement for one or
more Note also that each functional process (-type) to be processed in a batch ‘job’ in batch
mode, each functional process should be analyzed in its entirety, independently of any other
functional processes in the same job. Each functional process in the job must have has its own
triggering Entry.” which must be measured.

The Business Example 3 is also not correctly explained in the Measurement Manual version
3.0.1.
.
“BUSINESS EXAMPLE 3: Suppose the orders in the Example 1 above are entered by an ‘off-line’
process in some way, e.g. by optical scanning of paper documents, and are stored
temporarily for automatic overnight batch processing. How to analyze the batch functional
process? The functional user is the human who causes the order data to be entered off-line
and to be processed in batch mode; on-line; the triggering Entry of the functional process that
will process the orders in batch mode is the data movement that moves the order data
group from temporary storage into the process. (The off-line process, if it must be
measured, involves another, separate functional process. Effectively, the functional user

 9

has initiated two triggering Entries, one starts the off-line process to load the orders to
temporary storage and the other to start the batch processing of the orders.)”

8. Proposed revisions to section 3.2.5 of the Measurement Manual

Change 8.1: Following the deletion of Rule g) for a functional process (see Change 6.1 above),
the Examples 2 and 3 of section 3.2.5 of the Measurement Manual will be replaced by the
following text and simpler Examples.

“According to clause c) of its definition, a functional process must ‘meet its FUR for all the
possible responses to its triggering Entry’. This means that the same one functional process type
must be able to deal with all possible occurrences of values of the data attributes of the data
group moved by its triggering Entry, including both valid and invalid data values, and even in
some cases missing data values. All these variations in values of the data moved by the
triggering Entry will usually result in different processing paths being followed when the functional
process executes. But in spite of all these variations, we must still identify only the one functional
process type started by its one triggering Entry. (And the Measurer only needs to identify the
unique data movements of this functional process; the various processing paths in which they
may occur are irrelevant to the measurement.)

BUSINESS EXAMPLE 2: A business application functional process will normally execute
different processing paths depending on the values (valid or not) of the input data.
BUSINESS EXAMPLE 3: A functional process that provides a general search capability against a
database may be required to function with up to four search parameters (attributes of its
triggering Entry). But the same functional process must still be able to function if the values of
only one, two or three search parameters are entered.
BUSINESS EXAMPLE 4: For a functional process to register a new customer for a car rental
company, it is mandatory to enter data for most data attributes, but some (e.g. some contact
details) are optional and may be left blank. Regardless of whether all or a sub-set of these
attributes are entered there is only one functional process for registering a new customer.
Similarly, for the functional process to make a car rental reservation in the same company, there
are several options which may or may not be taken up, e.g. for extra insurance, additional drivers,
requests for child seats, etc. These different options lead to different processing paths within the
car rental reservation functional process, but there is still only one functional process for reserving
a car rental.
REAL-TIME EXAMPLE: One triggering Entry (aircraft altitude information sent by the
Geographical Positioning System) to a functional process of an avionics system will trigger one of
two quite different processing paths within the functional process depending on the value of the
Entry, i.e. whether the altitude is above or below a given height. The different paths will display
different data groups on the pilot’s map and, if the altitude is too low, additional warnings will be
issued.”

9. Proposed new section 3.2.7 of the Measurement Manual

Change 9.1: The ‘independence’ of functional processes as in clause a) of the definition of a
functional process will be further supported by adding the following new section 3.2.7.

3.2.7: Independence of functional processes sharing some common or similar functionality

Any two or more functional processes in the same software being measured may have some
functionality that is identical or very similar in each process. This phenomenon is referred to as
‘functional commonality’, or functional ‘similarity’.

However, in the COSMIC method (as in all other FSM Methods) each functional process is
defined, modelled and measured independently of, i.e. without reference to, any other functional

 10

process in the same software being measured (see clause a) of the definition of a functional
process). Any required functionality that is common to or similar across any two or more
functional processes in the same software being measured must be accounted for in each of

these functional processes. The following are examples of functional commonality or similarity

that may be found in practice.

BUSINESS EXAMPLE: Several functional processes in the same software being measured may
need the same validation functionality for e.g. ‘date of order’, or may need to access the same
data, or may need to carry out the same interest calculation.

REAL-TIME EXAMPLE: Several functional processes in the same software being measured may
need to obtain data from the same sensor (common movement of the same data group) or may
need to carry out the same scale conversion calculation, e.g. from Fahrenheit to Centigrade
(common data manipulation).

When a statement of FUR is implemented in software, any ‘functional commonality’ may or may
not be developed as re-usable software. The extent of actual or potential software re-use arising
from functional commonality or similarity may therefore need to be taken into account when using
functional size measurements for performance measurement or project effort estimating
purposes.

10. Proposed new section 3.2.8. ‘Events that trigger a software system to start
executing’

Change 10.1: In teaching the COSMIC method and in practical measurement work, we have
observed that Measurers sometimes have difficulty deciding what are the triggering events and
the resulting triggering Entries when measuring batch-processed business applications. To
understand the correct way to measure any applications, particularly if batch-processed, the
Measurer must distinguish:

 the events that give rise to the functional processes of the application to be measured,
and

 the event that triggers the start (or ‘launch’) of the (batch) application to be measured.
The former are of interest. The latter should be ignored.

The confusion can lead to incorrectly identifying the triggering Entries for functional processes
that are executed in batch mode. This topic is discussed in the ‘Guideline for sizing Business
Application Software’ (section 4.4.3). But the topic is more general, so a new section is proposed
for the Measurement Manual.

“Section 3.2.8: Events that trigger a software system to start executing

When measuring the size of a piece of software, identify only the events and corresponding
triggering Entries that trigger the functional processes that the software must respond to as
defined in its FUR. Functionality needed to start-up (or ‘launch’) the software itself is not part of
these functional processes and should be ignored (or measured separately, if required).

The following examples describe how software is started in three domains.

BUSINESS EXAMPLE: For a business application, the functional user that starts the application
may be a scheduler component of the operating system, a computer operator, or any other
human user (e.g. when a PC user launches a browser or word-processing software).

REAL-TIME EXAMPLE: For a real-time application, the functional user that starts the application
may be the operating system or network management generating a clock signal, or a human
operator (e.g. to start a process control system from an operator workstation).

 11

INFRASTRUCTURE EXAMPLE: For a computer operating system, the functional user that starts
the operating system is a bootstrap program that is started when the computer power is switched
on.

The following are examples from two domains of the relationships that may exist, if any, between
the event/process that starts the software to be measured and the events/processes that the
software must execute as described in its FUR.

BUSINESS EXAMPLE 1: An application to process the input data for a variety of functional
processes in batch mode may be started by a scheduler of the operating system. If the purpose is
to measure the FUR of the batch application, the ‘start-the-system’ functionality should be
ignored. The triggering Entries for the functional processes of the batch-processed application
and any other Entries that may be required will form the input data for the batch application.

BUSINESS EXAMPLE 2: Exceptionally, a batch-processed application to produce summary
reports at the end of a time-period may be started without needing any input data provided
directly from the functional user. In spite of the lack of input data, each functional process of the
application must have a triggering Entry that commands: ‘produce this end-of-time-period
summary report’.

REAL-TIME EXAMPLE: A modern vehicle has a distributed system of Electronic Control Units
(ECU’s) to control many functions, e.g. engine management, brakes, air-conditioning, etc. In a
distributed system, the “Network Management” (NM) module, which is always running, is
responsible for activating the ECUs that are connected together via a network (bus). This module
also handles the coordinated switching between the ECU operating states: Normal Operation,
Low Power and Sleep. Therefore it is the NM that wakes up or puts to sleep ECUs. When
measuring any ECU application software, this NM functionality should be ignored.

11. Futher impact of the proposed changes:

The proposed changes will result in the need for changes in a few other places in the
Measurement Manual, and in the Guideline for measuring Business Applications.

All the above changes will be incorporated in the next release of the Measurement Manual.

The Measurement Practices Committee

December, 2013

 12

Appendix: Examples of the cardinality of relationships between triggering events,
functional users, triggering Entries and functional processes

All the relationships along the triggering event / functional user / triggering Entry / functional
process chain (as shown in Fig. 3.2.1) may be many-to-many in principle, with one exception.
(The exception is that any one triggering Entry may initiate only one functional process – see
Rule b) for a functional process in section 3.2.2.)

The table below shows examples of possible relationships. Note that the cases may not be
exhaustive. The table uses the following abbreviations and symbols.

Triggering event

Functional User

Data group (dotted part)
moved by a triggering

Entry (solid arrow)

Functional Process

1. A single triggering event may cause multiple FU’s to each initiate a triggering Entry
in the same or in different software systems. Each triggering Entry starts its own FP

REAL TIME EXAMPLE: The triggering event of
an earthquake may be detected by multiple
independent FU sensors. Each FU initiates a
triggering Entry that starts its FP in the same or
in different systems.
BUSINESS EXAMPLE: The triggering event of a
new employee starting work causes one human
FU to enter basic employee data to a Personnel
system and another human FU to enter salary
data to a Payroll system.

2. A human functional user can sense or generate (e.g. when taking a decision) many
types of triggering events. Each of these causes the FU to initiate a different triggering
Entry. Each of these starts its FP in the same or in different software systems.

BUSINESS EXAMPLE: In a police emergency
telephone call-handling system, many types of
triggering events may be reported causing a
human FU to decide to initiate different
triggering Entries. Each of these starts its FP to
record the event. Additionally, the human user
may initiate different enquiry triggering Entries.
Each of these starts its FP in the same call-
handling system or in other systems.

TEv FU

TEv

FU

FU

FU
FP

FP

FP

Human

FU

FP

FP

FP
TEv

TEv

TEv

 13

3. A hardware or software FU may be designed to sense (or ‘generate’) one or more
specific type(s) of events. Each event causes the FU to initiate a triggering Entry. Each
triggering Entry starts its FP in the same software system.

REAL-TIME EXAMPLE: When the temperature
of a liquid reaches a pre-set level (the triggering
event), a thermocouple FU initiates a triggering
Entry to start its FP in one specific software
system.

BUSINESS EXAMPLE: In a distributed software
application, the client component is a FU of the
server component. Different needs for
information (the triggering events) of the client
component cause it to initiate different triggering
Entries, each to start its FP in the server
component, for each different type of service it
needs.

4. Two or more hardware FU’s of the same software may sense the same triggering
event. Each FU may initiate the triggering Entry that starts the same one FP.

REAL-TIME EXAMPLE: The triggering event
of an abnormal situation in a real-time process
control system, may be sensed by one or more
hardware FU’s. Each FU may initiate the one
emergency shut-down FP.
(N.B. any one occurrence of this FP will be
initiated by the first FU to sense the triggering
event.

5. Two or more software FU’s may each initiate a triggering Entry that starts the same
one FP.

INFRASTRUCTURE EXAMPLE: Several
software FU’s may each ‘call’, i.e. initiate, the
same FP in the same re-usable software
component. (In this case the software FU
‘generates’ the event when it calls the
component.) (N.B. any one occurrence of this
FP can be initiated by only one of its possible
software FU’s at any one time.)

6. On sensing one triggering event, a FU may initiate two or more triggering Entries.
Each triggering Entry starts its FP in the same software,

REAL-TIME EXAMPLE: In a duplex safety-
critical control system, one triggering event may
cause a FU (usually hardware) to initiate two
triggering Entries, each starting its FP. The two
FP’s could, for example, have the same FUR but
be developed by separate groups as a result of
a diversity strategy.

TEv
Hardware

FU FP

TEv

TEv

TEv

Software

FU

FP

FP

FP

(Client)

(Server)

FP

Hardware

FU

Hardware

FU

Hardware

FUTEv or

or

TEv

TEv

TEv
Software

FU

Software

FU

Software

FU

FP
or
or

TEv
Hardware

FU

FP

FP

and

